Tuning face perception with electrical stimulation of the fusiform gyrus.

HUMAN BRAIN MAPPING(2017)

引用 26|浏览17
暂无评分
摘要
The fusiform gyrus (FG) is an important node in the face processing network, but knowledge of its causal role in face perception is currently limited. Recent work demonstrated that high frequency stimulation applied to the FG distorts the perception of faces in human subjects (Parvizi et al. [2012]: J Neurosci 32: 14915-14920). However, the timing of this process in the FG relative to stimulus onset and the spatial extent of FG's role in face perception are unknown. Here, we investigate the causal role of the FG in face perception by applying precise, event-related electrical stimulation (ES) to higher order visual areas including the FG in six human subjects undergoing intracranial monitoring for epilepsy. We compared the effects of single brief (100 ls) electrical pulses to the FG and non-face-selective visual areas on the speed and accuracy of detecting distorted faces. Brief ES applied to face-selective sites did not affect accuracy but significantly increased the reaction time (RT) of detecting face distortions. Importantly, RT was altered only when ES was applied 100ms after visual onset and in face-selective but not place-selective sites. Furthermore, ES applied to face-selective areas decreased the amplitude of visual evoked potentials and high gamma power over this time window. Together, these results suggest that ES of face-selective regions within a critical time window induces a delay in face perception. These findings support a temporally and spatially specific causal role of face-selective areas and signify an important link between electrophysiology and behavior in face perception. (C) 2017 Wiley Periodicals, Inc.
更多
查看译文
关键词
electrical stimulation,electrocorticography,fusiform gyrus,cortico-cortical evoked potentials,high gamma power
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要