Metallothionein prevents doxorubicin cardiac toxicity by indirectly regulating the uncoupling proteins 2

Food and Chemical Toxicology(2017)

引用 12|浏览10
暂无评分
摘要
Doxorubicin (Dox) is a broad-spectrum anticancer agent, but its clinical use is restricted due to irreversible cardiac toxicity. Metallothionein (MT) can inhibit Dox-induced cardiac toxicity. Applying a proteomics approach we determined that uncoupling proteins (UCPs) may be implicated in this process. This study was designed to examine the mechanisms of MT against Dox cardiac toxicity and the link between MT and UCP2. In vivo, wild-type (MT+/+) and MT-I/II null (MT−/−) mice were given a single dose of Dox (15 mg/kg, i.p.) and sacrificed at 4 days after Dox injection. In vitro, cardiomyocytes were prepared from MT−/− and MT+/+ neonatal mice and cardiomyocytes were pretreated with typical antioxidant NAC or the UCP2 inhibitor genipin followed by exposure to Dox. Based on the results, genipin enhanced Dox-induced oxidative injury, particularly in MT−/− cardiomyocyte. UCP2 levels in MT−/− mice were significantly lower compared to MT+/+ mice treated with Dox. Co-immunoprecipitation demonstrated that MT did not directly bind to UCP2. The NAC and Nrf2 activator oltipraz inhibit the decrease of UCP2 expression induced by Dox. Therefore, attenuating free radical damage with UCP2 help MT antagonize the Dox-induced cardiac toxicity, but does not directly bind MT. MT may regulate UCP2 expression by up-regulating Nrf2.
更多
查看译文
关键词
Doxorubicin,Metallothionein,Uncoupling proteins,Nrf2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要