Chrome Extension
WeChat Mini Program
Use on ChatGLM

Interpreting Quasi-Thermal Effects in Ultrafast Spectroscopy of Hydrogen-Bonded Systems.

JOURNAL OF PHYSICAL CHEMISTRY A(2018)

Cited 5|Views48
No score
Abstract
Vibrational excitation of molecules in the condensed phase relaxes through vibrational modes of decreasing energy to ultimately generate an equilibrium state in which the energy is distributed among low-frequency modes. In ultrafast vibrational spectroscopy, changes in the vibrational features of hydrogen bonded NH and OH stretch modes are typically observed to persist long after these high-frequency vibrations have relaxed. Due to the resemblance to the spectral changes caused by heating the sample, these features are typically described as arising from a hot ground state. However, these spectral features appear on ultrafast time scales that are much too fast to result from a true thermal state, and significant differences between the thermal difference spectrum and the induced quasi-thermal changes in ultrafast spectroscopy are often observed. Here, we examine and directly compare the thermal and quasi-thermal responses of the hydrogen-bonded homodimer of 7-azaindole with temperature-dependent FTIR spectroscopy and ultrafast mid-IR continuum spectroscopy. We find that the thermal difference spectra contain contributions from both dissociation of the hydrogen bonds and from frequency shifts due to changes in the thermal population of low-frequency modes. The transient spectra in ultrafast vibrational spectroscopy are also found to contain two contributions: initial frequency shifts over 2.3 +/- 0.11 ps associated with equilibration of the initial excitation, and frequency shifts associated with the excitation of several fingerprint modes, which decay over 21.8 +/- 0.11 ps, giving rise to a quasi-thermal response caused by a distribution of fingerprint modes being excited within the sample ensemble. This resembles the thermal frequency shifts due to population changes of low-frequency modes, but not the overall thermal spectrum, which is dominated by features caused by dimer dissociation. These findings provide insight into the changes in the vibrational spectrum from different origins and are important for assigning, analyzing, and comparing features in thermal and ultrafast vibrational spectroscopy of hydrogen-bonded complexes.
More
Translated text
Key words
ultrafast spectroscopy,quasi-thermal,hydrogen-bonded
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined