Chrome Extension
WeChat Mini Program
Use on ChatGLM

Modelling of Nanoscale Multi-Gate Transistors Affected by Atomistic Interface Roughness

Journal of physics Condensed matter(2018)

Cited 0|Views32
No score
Abstract
Interface roughness scattering (IRS) is one of the major scattering mechanisms limiting the performance of non-planar multi-gate transistors, like Fin field-effect transistors (FETs). Here, two physical models (Ando's and multi-sub-band) of electron scattering with the interface roughness induced potential are investigated using an in-house built 3D finite element ensemble Monte Carlo simulation toolbox including parameter-free 2D Schrödinger equation quantum correction that handles all relevant scattering mechanisms within highly non-equilibrium carrier transport. Moreover, we predict the effect of IRS on performance of FinFETs with realistic channel cross-section shapes with respect to the IRS correlation length (Λ) and RMS height ([Formula: see text]). The simulations of the n-type SOI FinFETs with the multi-sub-band IRS model shows its very strong effect on electron transport in the device channel compared to the Ando's model. We have also found that the FinFETs are strongly affected by the IRS in the ON-region. The limiting effect of the IRS significantly increases as the Fin width is reduced. The FinFETs with [Formula: see text] channel orientation are affected more by the IRS than those with the [Formula: see text] crystal orientation. Finally, Λ and [Formula: see text] are shown to affect the device performance similarly. A change in values by 30% (Λ) or [Formula: see text] ([Formula: see text]) results in an increase (decrease) of up to [Formula: see text] in the drive current.
More
Translated text
Key words
multi-sub-band interface roughness scattering (IRS),Schrodinger based quantum corrections,drift-diffusion (DD),Monte Carlo (MC),finite element (FE) method
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined