Role of ATP-sensitive potassium channels on hypoxic pulmonary vasoconstriction in endotoxemia

Respiratory research(2018)

引用 10|浏览6
暂无评分
摘要
Background ATP-regulated potassium channels (KATP) regulate pulmonary vascular tone and are involved in hypoxic pulmonary vasoconstriction (HPV). In patients with inflammation like sepsis or ARDS, HPV is impaired, resulting in a ventilation-perfusion mismatch and hypoxia. Since increase of vascular KATP channel Kir6.1 has been reported in animal models of endotoxemia, we studied the expression and physiological effects of Kir6.1 in murine endotoxemic lungs. We hypothesized that inhibition of overexpressed Kir6.1 increases HPV in endotoxemia. Methods Mice (C57BL/6; n = 55) with ( n = 27) and without ( n = 28) endotoxemia (35 mg/kg LPS i.p. for 18 h) were analyzed for Kir6.1 gene as well as protein expression and HPV was examined in isolated perfused mouse lungs with and without selective inhibition of Kir6.1 with PNU-37883A. Pulmonary artery pressure (PAP) and pressure-flow curves during normoxic (F i O 2 0.21) and hypoxic (F i O 2 0.01) ventilation were obtained. HPV was quantified as the increase in perfusion pressure in response to hypoxic ventilation in mmHg of baseline perfusion pressure (ΔPAP) in the presence and absence of PNU-37883A. Results Endotoxemia increases pulmonary Kir6.1 gene (+ 2.8 ± 0.3-fold) and protein expression (+ 2.1 ± 0.3-fold). Hypoxia increases HPV in lungs of control animals, while endotoxemia decreases HPV (∆PAP control: 9.2 ± 0.9 mmHg vs. LPS: 3.0 ± 0.7 mmHg, p < 0.05, means ± SEM). Inhibition of Kir6.1 with 1 μM PNU-37883A increases HPV in endotoxemia, while not increasing HPV in controls (∆PAP PNU control: 9.3 ± 0.7 mmHg vs. PNU LPS: 8.3 ± 0.9 mmHg, p < 0.05, means ± SEM). Conclusion Endotoxemia increases pulmonary Kir6.1 gene and protein expression. Inhibition of Kir6.1 augments HPV in murine endotoxemic lungs.
更多
查看译文
关键词
Hypoxic pulmonary constriction,Endotoxemia,Lung,Mouse,Kir6.1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要