Lck/Hck/Fgr-Mediated Tyrosine Phosphorylation Negatively Regulates TBK1 to Restrain Innate Antiviral Responses.

Cell host & microbe(2017)

引用 27|浏览30
暂无评分
摘要
Cytosolic nucleic acid sensing elicits interferon production for primary antiviral defense through cascades controlled by protein ubiquitination and Ser/Thr phosphorylation. Here we show that TBK1, a core kinase of antiviral pathways, is inhibited by tyrosine phosphorylation. The Src family kinases (SFKs) Lck, Hck, and Fgr directly phosphorylate TBK1 at Tyr354/394, to prevent TBK1 dimerization and activation. Accordingly, antiviral sensing and resistance were substantially enhanced in Lck/Hck/Fgr triple knockout cells and ectopic expression of Lck/Hck/Fgr dampened the antiviral defense in cells and zebrafish. Small-molecule inhibitors of SFKs, which are conventional anti-tumor therapeutics, enhanced antiviral responses and protected zebrafish and mice from viral attack. Viral infection induced the expression of Lck/Hck/Fgr through TBK1-mediated mobilization of IRF3, thus constituting a negative feedback loop. These findings unveil the negative regulation of TBK1 via tyrosine phosphorylation and the functional integration of SFKs into innate antiviral immunity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要