Life on N 2 O: deciphering the ecophysiology of N 2 O respiring bacterial communities in a continuous culture

ISME JOURNAL(2018)

Cited 69|Views10
No score
Abstract
Reduction of the greenhouse gas N 2 O to N 2 is a trait among denitrifying and non-denitrifying microorganisms having an N 2 O reductase, encoded by nosZ . The nosZ phylogeny has two major clades, I and II, and physiological differences among organisms within the clades may affect N 2 O emissions from ecosystems. To increase our understanding of the ecophysiology of N 2 O reducers, we determined the thermodynamic growth efficiency of N 2 O reduction and the selection of N 2 O reducers under N 2 O- or acetate-limiting conditions in a continuous culture enriched from a natural community with N 2 O as electron acceptor and acetate as electron donor. The biomass yields were higher during N 2 O limitation, irrespective of dilution rate and community composition. The former was corroborated in a continuous culture of Pseudomonas stutzeri and was potentially due to cytotoxic effects of surplus N 2 O. Denitrifiers were favored over non-denitrifying N 2 O reducers under all conditions and Proteobacteria harboring clade I nosZ dominated. The abundance of nosZ clade II increased when allowing for lower growth rates, but bacteria with nosZ clade I had a higher affinity for N 2 O, as defined by μ max / K s . Thus, the specific growth rate is likely a key factor determining the composition of communities living on N 2 O respiration under growth-limited conditions.
More
Translated text
Key words
Microbial communities,Physiology,Life Sciences,general,Microbiology,Ecology,Evolutionary Biology,Microbial Genetics and Genomics,Microbial Ecology
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined