Forward and Reverse Waves: Modeling Distortion Products in the Intracochlear Fluid Pressure.

Biophysical journal(2018)

Cited 16|Views3
No score
Abstract
Distortion product otoacoustic emissions are sounds that are emitted by the cochlea due to the nonlinearity of the outer hair cells. These emissions play an important role both in clinical settings and research laboratories. However, how distortion products propagate from their generation location to the middle ear remains unclear; whether distortion products propagate as a slow reverse traveling wave, or as a fast compression wave, through the cochlear fluid has been debated. In this article, we evaluate the contributions of the slow reverse wave and fast compression wave to the propagation of intracochlear distortion products using a physiologically based nonlinear model of the gerbil cochlea. This model includes a 3D two-duct model of the intracochlear fluid and a realistic model of outer hair cell biophysics. Simulations of the distortion products in the cochlear fluid pressure in response to a two-tone stimulus are compared with published in vivo experimental results. Whereas experiments have characterized distortion products at a limited number of locations, this model provides a complete description of the fluid pressure at all locations in the cochlear ducts. As in experiments, the spatial variations of the distortion products in the fluid pressure have some similarities with what is observed in response to a pure tone. Analysis of the fluid pressure demonstrates that although a fast wave component is generated, the slow wave component dominates the response. Decomposition of the model simulations into forward and reverse wave components shows that a slow forward propagating wave is generated due to the reflection of the slow reverse wave at the stapes. Wave interference between the reverse and forward components sometimes complicates the analysis of distortion products propagation using measurements at a few locations.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined