谷歌浏览器插件
订阅小程序
在清言上使用

STAC2 negatively regulates osteoclast formation by targeting the RANK signaling complex

CELL DEATH AND DIFFERENTIATION(2018)

引用 23|浏览4
暂无评分
摘要
The receptor activator of nuclear factor-κB (RANK) protein activates various protein kinase signaling cascades, including those involving NF-κB, mitogen-activated protein kinase (MAPK), and Bruton tyrosine kinase (Btk)/tyrosine-protein kinase Tec. However, the mechanism underlying the negative regulation of RANK by downstream signaling molecules remains unclear. Here, we report that Src homology 3 domain and cysteine-rich domain-containing protein 2 (STAC2) is a novel RANK ligand-inducible protein that negatively regulates RANK-mediated osteoclast formation. STAC2 physically interacts with RANK and inhibits the formation of the RANK signaling complex, which contains Grb-2-associated binder 2 (Gab2) and phospholipase Cγ2 (PLCγ2), thus leading to the suppression of RANK-mediated NF-κB and MAPK activation. Furthermore, STAC2 overexpression limits Btk/Tec-mediated PLCγ2 phosphorylation via the interaction between STAC2 and Btk/Tec. Taken together, our results reveal a novel mechanism whereby RANK signaling is restricted by its physical interaction with STAC2.
更多
查看译文
关键词
Endocrine system and metabolic diseases,Haematopoietic cell growth factors,Life Sciences,general,Biochemistry,Cell Biology,Stem Cells,Apoptosis,Cell Cycle Analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要