Generalized Theory for the Timescale of Molecular Electronic Decoherence in the Condensed Phase (vol 9, pg 773, 2018)

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2020)

引用 35|浏览4
暂无评分
摘要
We introduce a general theory of electronic decoherence for molecules in the condensed phase that captures contributions coming from pure dephasing effects, electronic transitions among diabatic states, and their interference. The theory is constructed by taking advantage of a recently developed [J. Phys. Chem. Lett. 2017, 8, 4289-4294] general expression for decoherence times that is based on an early time expansion of the purity dynamics and extends early electronic decoherence models based on pure dephasing ideas. Using this theory, we construct the decoherence time for the displaced harmonic oscillator model amended with constant and linear diabatic couplings, which is a widely used model of the photoexcited dynamics of molecules. The validity of the short-time expansion is demonstrated by the quantitative agreement of the theory with exact numerical computations of the decoherence dynamics obtained using the hierarchical equation of motion method. These developments offer a rigorous understanding of early time electronic decoherence processes that accompany basic molecular events and demonstrate that electronic transitions among diabatic states play a major role in the decoherence dynamics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要