Chrome Extension
WeChat Mini Program
Use on ChatGLM

Transcriptional regulation of chickpea ferritin CaFer1 influences its role in iron homeostasis and stress response.

Journal of Plant Physiology(2018)

Cited 7|Views2
No score
Abstract
Ferritin, ubiquitous among all living organisms except yeast, exhibits iron-regulated expression. In plants, this regulation is applied through transcriptional control. Previous studies established the presence of two types of cis-acting elements in the promoter region: the iron regulatory element (FRE) in soybean and the iron-dependent regulatory sequence (IDRS) in maize and Arabidopsis. Adverse environmental conditions (e.g. water-deficit and oxidative stress) are known to modulate the expression of phytoferritin genes. In this study, we cloned and investigated the promoter sequence of a chickpea ferritin, designated CaFer1. Phylogenetic analysis of the CaFer1 promoter revealed its evolutionary relationship with other phytoferritins. The CaFer1 promoter exhibited several putative regulatory elements including two known transcription factor (TF) binding sites, Athb-1 and Myb.Ph. Electrophoretic mobility shift assay confirmed the sequence-specific binding of Athb-1 and Myb.Ph on the CaFer1 promoter. The TF-binding dynamics of CaFer1 showed high induction under conditions of iron-deficiency and water-deficit. We also demonstrated the possible interaction of CaFer1 with IRT1, a key component of the iron uptake system in plants, indicating its involvement in maintaining cellular iron levels. These results provide new insights into the underlying mechanisms of function of these interacting factors in CaFer1-mediated iron homeostasis and the stress response in plants.
More
Translated text
Key words
Fe,EMSA,IDRS,FRE,IRE,ABA,ABRE,PHR1
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined