Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots

BMC genomics(2017)

引用 75|浏览3
暂无评分
摘要
Background Glutamate is an active amino acid. In addition to protein synthesis and metabolism, increasing evidence indicates that glutamate may also function as a signaling molecule in plants. Still, little is known about the nutritional role of glutamate and genes that are directly regulated by glutamate in rice. Results Exogenous glutamate could serve as a nitrogen nutrient to support the growth of rice seedlings, but it was not as effective as ammonium nitrate or glutamine. In nitrogen-starved rice seedlings, glutamate was the most abundant free amino acid and feeding of glutamate rapidly and significantly increased the endogenous levels of glutamine, but not glutamate. These results indicated that glutamate was quickly metabolized and converted to the other nitrogen-containing compounds in rice. Transcriptome analysis revealed that at least 122 genes involved in metabolism, transport, signal transduction, and stress responses in the roots were rapidly induced by 2.5 mM glutamate within 30 min. Many of these genes were also up-regulated by glutamine and ammonium nitrate. Still, we were able to identify some transcription factor, kinase/phosphatase, and elicitor-responsive genes that were specifically or preferentially induced by glutamate. Conclusions Glutamate is a functional amino acid that plays important roles in plant nutrition, metabolism, and signal transduction. The rapid and specific induction of transcription factor, kinase/phosphatase and elicitor-responsive genes suggests that glutamate may efficiently amplify its signal and interact with other signaling pathways to regulate metabolism, growth and defense responses in rice.
更多
查看译文
关键词
Defense response,Gene expression,Glutamate,Metabolism,Rice,Signal transduction,Transcription factor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要