Benchmarking Water Oxidation Catalysts Based on Iridium Complexes: Clues and Doubts on the Nature of Active Species.

CHEMSUSCHEM(2017)

引用 36|浏览6
暂无评分
摘要
Water oxidation (WO) is a central reaction in the photo- and electro-synthesis of fuels. Iridium complexes have been successfully exploited as water oxidation catalysts (WOCs) with remarkable performances. Herein, we report a systematic study aimed at benchmarking well-known Ir WOCs, when NaIO4 is used to drive the reaction. In particular, the following complexes were studied: cis-[Ir(ppy)2 (H2 O)2 ]OTf (ppy=2-phenylpyridine) (1), [Cp*Ir(H2 O)3 ]NO3 (Cp*=1,2,3,4,5-pentamethyl-cyclopentadienyl anion) (2), [Cp*Ir(bzpy)Cl] (bzpy=2-benzoylpyridine) (3), [Cp*IrCl2 (Me2 -NHC)] (NHC=N-heterocyclic carbene) (4), [Cp*Ir(pyalk)Cl] (pyalk=2-pyridine-isopropanoate) (5), [Cp*Ir(pic)NO3 ] (pic=2-pyridine-carboxylate) (6), [Cp*Ir{(P(O)(OH)2 }3 ]Na (7), and mer-[IrCl3 (pic)(HOMe)]K (8). Their reactivity was compared with that of IrCl3 ⋅n H2 O (9) and [Ir(OH)6 ]2- (10). Most measurements were performed in phosphate buffer (0.2 m), in which 2, 4, 5, 6, 7, and 10 showed very high activity (yield close to 100 %, turnover frequency up to 554 min-1 with 10, the highest ever observed for a WO-driven by NaIO4 ). The found order of activity is: 10>2≈4>6>5>7>1>9>3>8. Clues concerning the molecular nature of the active species were obtained, whereas its exact nature remains doubtfully.
更多
查看译文
关键词
iridium complexes,kinetics,nanoparticles,sodium periodate,water oxidation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要