Quantitative RNA-seq meta-analysis of alternative exon usage in .

GENOME RESEARCH(2017)

引用 33|浏览10
暂无评分
摘要
Almost 20 years after the completion of the C. elegans genome sequence, gene structure annotation is still an ongoing process with new evidence for gene variants still being regularly uncovered by additional in-depth transcriptome studies. While alternative splice forms can allow a single gene to encode several functional isoforms, the question of how much spurious splicing is tolerated is still heavily debated. Here we gathered a compendium of 1682 publicly available C. elegans RNA-seq data sets to increase the dynamic range of detection of RNA isoforms, and obtained robust measurements of the relative abundance of each splicing event. While most of the splicing reads come from reproducibly detected splicing events, a large fraction of purported junctions is only supported by a very low number of reads. We devised an automated curation method that takes into account the expression level of each gene to discriminate robust splicing events from potential biological noise. We found that rarely used splice sites disproportionately come from highly expressed genes and are significantly less conserved in other nematode genomes than splice sites with a higher usage frequency. Our increased detection power confirmed trans-splicing for at least 84% of C. elegans protein coding genes. The genes for which trans-splicing was not observed are overwhelmingly low expression genes, suggesting that the mechanism is pervasive but not fully captured by organism-wide RNA-seq. We generated annotated gene models including quantitative exon usage information for the entire C. elegans genome. This allows users to visualize at a glance the relative expression of each isoform for their gene of interest.
更多
查看译文
关键词
Splicing,<italic>C. elegans</italic>,RNA-seq,splice leader,trans splicing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要