Prediction of the structural response of the femoral shaft under dynamic loading using subject-specific finite element models.

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING(2017)

引用 14|浏览13
暂无评分
摘要
The goal of this study was to predict the structural response of the femoral shaft under dynamic loading conditions using subject-specific finite element (SS-FE) models and to evaluate the prediction accuracy of the models in relation to the model complexity. In total, SS-FE models of 31 femur specimens were developed. Using those models, dynamic three-point bending and combined loading tests (bending with four different levels of axial compression) of bare femurs were simulated, and the prediction capabilities of five different levels of model complexity were evaluated based on the impact force time histories: baseline, mass-based scaled, structure-based scaled, geometric SS-FE, and heterogenized SS-FE models. Among the five levels of model complexity, the geometric SS-FE and the heterogenized SS-FE models showed statistically significant improvement on response prediction capability compared to the other model formulations whereas the difference between two SS-FE models was negligible. This result indicated the geometric SS-FE models, containing detailed geometric information from CT images with homogeneous linear isotropic elastic material properties, would be an optimal model complexity for prediction of structural response of the femoral shafts under the dynamic loading conditions. The average and the standard deviation of the RMS errors of the geometric SS-FE models for all the 31 cases was 0.46 kN and 0.66 kN, respectively. This study highlights the contribution of geometric variability on the structural response variation of the femoral shafts subjected to dynamic loading condition and the potential of geometric SS-FE models to capture the structural response variation of the femoral shafts.
更多
查看译文
关键词
Subject-specific finite element models,femur,three-point bending,morphing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要