Identification and expression analysis of photoreceptor genes in kiwifruit leaves under natural daylength conditions and their relationship with other genes that regulate photoperiodic flowering

Journal of Plant Physiology(2017)

引用 1|浏览6
暂无评分
摘要
Kiwifruit (Actinidia chinensis var. deliciosa (A. Chev) A. Chev.) is a dioecious vine highly dependent on pollination, which is limited by a lack of synchrony of flowering time between male and female plants. In many plant species, the regulation of the timing of flowering depends largely on seasonal cues such as photoperiod, which is detected by photoreceptors. In this report, we determined the full sequences of the PHYB (AcPHYB) and PHYA (AcPHYA) genes and a partial sequence of the CRY2 (AcCRY2) gene in kiwifruit. Next, we monitored the expression patterns of these photoreceptor genes (AcPHYA, AcPHYB and AcCRY2) as well as other genes involved in flowering regulation (AcCO-like and AcFT) in the leaves of kiwifruit plants grown under natural photoperiods in the field. The annual expression patterns of AcPHYB, AcPHYA and AcCRY2 genes showed that they were significantly highly expressed from late flower development until full bloom and fitting with floral evocation, closely matching the peaks of expression detected for the AcFT and AcCO-like genes. In addition, the daily expression patterns of AcPHYB, AcPHYA and AcCRY2 were analyzed in leaves collected under different daylength conditions. Under long-day (LD) conditions, maximum expression levels were detected in the middle of the day in April (before full bloom), while their expression lost their daily rhythmic patterns in June (after full bloom) and were consistently expressed at low levels. Under short-day (SD) conditions, AcPHYB, AcPHYA and AcCRY2 gene expression patterns were the opposite of those observed in April. With respect to AcFT, no expression was detected in SD conditions. In contrast, the AcCO-like gene oscillated for all daylength conditions with the same daily rhythm. Our results seem to indicate the involvement of photoreceptor genes in kiwifruit flowering regulation. The different daily expression patterns detected for AcPHYA, AcPHYB, AcCRY2 and AcFT under different daylength conditions suggest that photoperiod regulates their expression, while the uniform expression of the AcCO-like gene is in agreement with its reported regulation by the circadian clock.
更多
查看译文
关键词
A. chinensis var. deliciosa ‘Hayward’,Flowering,Photoperiod,Phytochromes,Cryptochrome
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要