Effects of Black Raspberry Extract and Protocatechuic Acid on Carcinogen-DNA Adducts and Mutagenesis, and Oxidative Stress in Rat and Human Oral Cells.

CANCER PREVENTION RESEARCH(2016)

引用 25|浏览15
暂无评分
摘要
Effects of black raspberry (BRB) extract and protocatechuic acid (PCA) on DNA adduct formation and mutagenesis induced by metabolites of dibenzo[a, l] pyrene (DBP) were investigated in rat oral fibroblasts. The DBP metabolites, (+)-anti-11,12-dihydroxy-11,12,-dihydrodibenzo[a, l] pyrene (DBP-diol) and 11,12-dihydroxy 13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a, l] pyrene (DBPDE) induced dose-dependent DNA adducts and mutations. DBPDE was considerably more potent, whereas the parent compound had no significant effect. Treatment with BRB extract (BRBE) and PCA resulted in reduced DBP-derived DNA adduct levels and reduced mutagenesis induced by DBP-diol, but only BRBE was similarly effective against (DBPDE). BRBE did not directly inactivate DBPDE, but rather induced a cellular response-enhanced DNA repair. When BRBE was added to cells 1 day after the DBP-diol, the BRBE greatly enhanced removal of DBP-derived DNA adducts. As oxidative stress can contribute to several stages of carcinogenesis, BRBE and PCA were investigated for their abilities to reduce oxidative stress in a human leukoplakia cell line by monitoring the redox indicator, 2',7'-dichlorodihydrofluorescein diacetate (H2DCF) in cellular and acellular systems. BRBE effectively inhibited the oxidation, but PCA was only minimally effective against H2DCF. These results taken together provide evidence that BRBE and PCA can inhibit initiation of carcinogenesis by polycyclic aromatic hydrocarbons; and in addition, BRBE reduces oxidative stress. (C) 2016 AACR.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要