How design features in digital math games support learning and mathematics connections

Computers in Human Behavior(2019)

引用 63|浏览5
暂无评分
摘要
Current research shows that digital games can significantly enhance children's learning. The purpose of this study was to examine how design features in 12 digital math games influenced children's learning. The participants in this study were 193 children in Grades 2 through 6 (ages 8–12). During clinical interviews, children in the study completed pre-tests, interacted with digital math games, responded to questions about the digital math games, and completed post-tests. We recorded the interactions using two video perspectives that recorded children's gameplay and responses to interviewers. We employed mixed methods to analyze the data and identify salient patterns in children's experiences with the digital math games. The analysis revealed significant gains for 9 of the 12 digital games and most children were aware of the design features in the games. There were eight prominent categories of design features in the video data that supported learning and mathematics connections. Six categories focused on how the design features supported learning in the digital games. These categories included: accuracy feedback, unlimited/multiple attempts, information tutorials and hints, focused constraint, progressive levels, and game efficiency. Two categories were more specific to embodied cognition and action with the mathematics, and focused on how design features promoted mathematics connections. These categories included: linked representations and linked physical actions. The digital games in this study that did not include linked representations and opportunities for linked physical actions as design features did not produce significant gains. These results suggest the key role of mathematics-specific design features in the design of digital math games.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要