Analyzing Residue Surface Proximity to Interpret Molecular Dynamics.

COMPUTER GRAPHICS FORUM(2018)

引用 4|浏览17
暂无评分
摘要
The surface of a molecule holds important information about the interaction behavior with other molecules. In dynamic folding or docking processes, residues of amino acids with different properties change their position within the molecule over time. The atoms of the residues that are accessible to the solvent can directly contribute to binding interactions, while residues buried within the molecular structure contribute to the stability of the molecule. Understanding patterns and causality of structural changes is important for experts in the pharmaceutical domain, e.g., in the process of drug design. We apply an iterative computation of the Solvent Accessible Surface in order to extract virtual layers of a molecule. The extraction allows to track the movement of residues in the body of the molecule, with respect to the distance of the residue to the surface or the core during dynamics simulations. We visualize the obtained layer information for the complete time span of the molecular dynamics simulation as a 2D-map and for individual time-steps as a 3D-representation of the molecule. The data acquisition has been implemented alongside with further analysis functionality in a prototypical application, which is available to the public domain. We underline the feasibility of our approach with a study from the pharmaceutical domain, where our approach has been used for novel insights into the folding behavior of -conotoxins.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要