Crypto Crumple Zones: Enabling Limited Access without Mass Surveillance

2018 IEEE European Symposium on Security and Privacy (EuroS&P)(2018)

引用 23|浏览57
暂无评分
摘要
Governments around the world are demanding more access to encrypted data, but it has been difficult to build a system that allows the authorities some access without providing unlimited access in practice. In this paper, we present new techniques for maximizing user privacy in jurisdictions that require support for so-called "exceptional access" to encrypted data. In contrast to previous work on this topic (e.g., key escrow), our approach places most of the responsibility for achieving exceptional access on the government, rather than on the users or developers of cryptographic tools. As a result, our constructions are very simple and lightweight, and they can be easily retrofitted onto existing applications and protocols. Critically, we introduce no new third parties, and we add no new messages beyond a single new Diffie-Hellman key exchange in protocols that already use Diffie-Hellman. We present two constructions that make it possible— although arbitrarily expensive—for a government to recover the plaintext for targeted messages. First, our symmetric crumpling technique uses a hash-based proof of work to impose a linear cost on the adversary for each message she wishes to recover. Second, our public key abrasion method uses a novel application of Diffie-Hellman over modular arithmetic groups to create an extremely expensive puzzle that the adversary must solve before she can recover even a single message. Our initial analysis shows that we can impose an upfront cost in the range of $100M to several billion dollars and a linear cost between $1K-$1M per message. We show how our constructions can easily be adapted to common tools including PGP, Signal, SRTP, full-disk encryption, and file-based encryption.
更多
查看译文
关键词
encryption,exceptional access,proof of work
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要