High phase space density loading of a falling magnetic trap

Applied Physics B(2018)

引用 0|浏览4
暂无评分
摘要
Loading an ultra-cold ensemble into a static magnetic trap involves unavoidable loss of phase space density when the gravitational energy dominates the kinetic energy of the ensemble. In such a case the gravitational energy is transformed into heat, making a subsequent evaporation process slower and less efficient. We apply a high phase space loading scheme on a sub-doppler cooled ensemble of Rubidium atoms, with a gravitational energy much higher than its temperature of 1 K . Using the regular configuration of a quadrupole magnetic trap, but driving unequal currents through the coils to allow the trap center to fall, we dissipate most of the gravitational energy and obtain a 20-fold improvement in the phase space density as compared to optimal loading into a static magnetic trap. Applying this scheme, we start an efficient and fast evaporation process as a result of the sub-second thermalization rate of the magnetically trapped ensemble.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要