PpsA-mediated alternative pathway to complement RNase E essentiality in Escherichia coli

Archives of Microbiology(2016)

引用 6|浏览3
暂无评分
摘要
Escherichia coli cells require RNase E, encoded by the essential gene rne , to propagate. The growth properties on different carbon sources of E. coli cells undergoing suppression of RNase E production suggested that reduction in RNase E is associated with decreased expression of phosphoenolpyruvate synthetase (PpsA), which converts pyruvate to phosphoenolpyruvate during gluconeogenesis. Western blotting and genetic complementation confirmed the role of RNase E in PpsA expression. Adventitious ppsA overexpression from a multicopy plasmid was sufficient to restore colony formation of ∆ rne E. coli on minimal media containing glycerol or succinate as the sole carbon source. Complementation of ∆ rne by ppsA overproduction was observed during growth on solid media but was only partial, and bacteria showed slowed cell division and grew as filamentous chains. We found that restoration of colony-forming ability by ppsA complementation occurred independent of the presence of endogenous RNase G or second-site suppressors of RNase E essentiality. Our investigations demonstrate the role of phosphoryl transfer catalyzable by PpsA as a determinant of RNase E essentiality in E. coli .
更多
查看译文
关键词
Ribonuclease E,RNase E,Gluconeogenesis,ppsA,Phosphotransferase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要