Lovasz Convolutional Networks

22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89(2019)

引用 0|浏览17
暂无评分
摘要
Semi-supervised learning on graph structured data has received significant attention with the recent introduction of Graph Convolution Networks (GCN). While traditional methods have focused on optimizing a loss augmented with Laplacian regularization framework, GCNs perform an implicit Laplacian type regularization to capture local graph structure. In this work, we propose Lovosz Convolutional Network (LCNs) which are capable of incorporating global graph properties. LCNs achieve this by utilizing Lovasz's orthonormal embeddings of the nodes. We analyse local and global properties of graphs and demonstrate settings where LCNs tend to work better than GCNs. We validate the proposed method on standard random graph models such as stochastic block models (SBM) and certain community structure based graphs where LCNs outperform GCNs and learn more intuitive embeddings. We also perform extensive binary and multi-class classification experiments on real world datasets to demonstrate LCN's effectiveness. In addition to simple graphs, we also demonstrate the use of LCNs on hyper-graphs by identifying settings where they are expected to work better than GCNs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要