Bayesian Robust Attributed Graph Clustering: Joint Learning of Partial Anomalies and Group Structure.

THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE(2018)

引用 79|浏览35
暂无评分
摘要
We study the problem of robust attributed graph clustering. In real data, the clustering structure is often obfuscated due to anomalies or corruptions. While robust methods have been recently introduced that handle anomalies as part of the clustering process, they all fail to account for one core aspect: Since attributed graphs consist of two views (network structure and attributes) anomalies might materialize only partially, i.e. instances might be corrupted in one view but perfectly fit in the other. In this case, we can still derive meaningful cluster assignments. Existing works only consider complete anomalies. In this paper, we present a novel probabilistic generative model (PAICAN) that explicitly models partial anomalies by generalizing ideas of Degree Corrected Stochastic Block Models and Bernoulli Mixture Models. We provide a highly scalable variational inference approach with runtime complexity linear in the number of edges. The robustness of our model w.r.t. anomalies is demonstrated by our experimental study, outperforming state-of-the-art competitors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要