A High-Rate Software-Defined Underwater Acoustic Modem With Real-Time Adaptation Capabilities.

IEEE ACCESS(2018)

引用 71|浏览30
暂无评分
摘要
There is an emerging need for high-rate underwater acoustic (UW-A) communication platforms to enable a new generation of underwater monitoring applications including video streaming. At the same time, modern UW-A communication architectures need to be flexible to adapt and optimize their communication parameters in real time based on the environmental conditions. Existing UW-A modems are limited in terms of achievable data rates and ability to adapt the protocol stack in real time. To overcome this limitation, we present the design, implementation, and experimental evaluation of a new high-rate software-defined acoustic modem (SDAM) with real-time adaptation capabilities for UW-A communications. We introduce new physical-layer adaptation mechanisms that enable either joint adaptation of communication parameters such as modulation constellation and channel coding rate or seamless switching between different communication technologies such as orthogonal-frequency-division-multiplexing and direct-sequence-spread-spectrum. The performance of the proposed SDAM has been evaluated in both indoor (water tank) and outdoor (lake) environments. We demonstrated that the SDAM achieves 104 kbit/s with bit-error-rate (BER) of 2x10(-5) , 208 kbit/s with BER of 10(-3), and 260 kbit/s with BER of 10(-2) in real time over a 200 m horizontal link at a very-shallow lake environment.
更多
查看译文
关键词
Underwater acoustic networks,underwater acoustic communication,high date rate,real-time video streaming,reconfigurability,real-time adaptation,software-defined acoustic modem
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要