Adsorption force of fibronectin controls transmission of cell traction force and subsequent stem cell fate

Biomaterials(2018)

引用 17|浏览27
暂无评分
摘要
The transmission of cell traction force (CTF) to underlying biomaterials is essential for adhered cells to measure and respond to their mechanical microenvironment. Given that the protein layer adsorbed on materials lies between the cells and materials, we hypothesize that the interfacial strength of protein-material interfaces (i.e., the adsorption force of proteins, Fad) should have an important role in regulating the transmission of CTF. To test this hypothesis, rat mesenchymal stem cells (rMSCs) were cultured on poly(dimethyl siloxane) (PDMS) substrates with different Fad of fibronectin (FN), and the transmission of CTF was observed by immunofluorescence staining of FN and deformation of PDMS. As revealed, FN on substrates with low Fad is more liable to be desorbed by CTF, which prevents the transmission of CTF to substrates. In contrast, high Fad facilitates the transmission of CTF from rMSCs to the FN layer and PDMS substrates so that rMSCs can perceive the mechanical properties of substrates. We further demonstrated that the divergent transmission of CTF on low and high Fad substrates regulates the lineage specifications of rMSCs. Our study confirms the important role of Fad in CTF transmission and provides a new perspective to gain insights into cell-material interactions and cell fates, which may help to guide the design of better biomaterials.
更多
查看译文
关键词
Protein adsorption force,Fibronectin,Cell traction force,Force transmission,Mesenchymal stem cell
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要