谷歌浏览器插件
订阅小程序
在清言上使用

A 1μw Voice Activity Detector Using Analog Feature Extraction and Digital Deep Neural Network.

2018 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE - (ISSCC)(2018)

引用 86|浏览35
关键词
voice UIs,energy-harvesting acoustic sensor nodes,battery-operating devices,voice activity detection,background noise,power gating,higher-level speech tasks,speaker identification,deep neural networks,classification accuracy,AFE variation,chip-wise training,mixed-signal decision tree classifier,ultra-low-power input devices,mobile devices,wearable devices,voice user interfaces,digital deep neural network,analog feature extraction,1μW voice activity detector,10dB SNR speech,1-σ standard deviation,digital filter bank,event-encoding A/D interface,digital BNN classifier,1μW VAD system utilizing AFE,ULP implementations,binarized neural networks,embedded systems,conventional floating-point DNNs,low input SNR,inferior classification accuracy,7-node DT,chip-to-chip basis,DT thresholds,machine-learning based calibration,analog signal processing,power 1.0 muW,power 6.0 muW,power 0.63 muW,noise figure 10.0 dB
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要