谷歌浏览器插件
订阅小程序
在清言上使用

Development of a wearable multi-sensor system for lower limb joint torque evaluation during stairs climbing

2017 IEEE International Conference on Real-time Computing and Robotics (RCAR)(2017)

引用 1|浏览2
暂无评分
摘要
Torque control is significant for the control of the exoskeleton robot. Different from the classical Newton-Euler method, this paper introduces a novel human model during low-speed stairs climbing for estimating the lower limbs joint torque in the sagittal plane. In this model, the stair ascent gait cycle is divided into four phases: single support, double support, right leg support with left redundancy and left leg support with right redundancy, which manifest to four different models. To verify the model, IMUs and smart shoes are used to measure the joint kinematic and ground contact force. A fuzzy logic rule is proposed for gait analysis in one stair ascent gait cycle. The optical measurement system and force plates are used as a reference, of which the basic principle is the Newton-Euler method. The results of kinematic and dynamic analysis based on the model are compared with the reference through a low-speed climbing stairs experiment with different loads.
更多
查看译文
关键词
lower limbs joint torque,sagittal plane,stair ascent gait cycle,single support,double support,leg support,left redundancy,joint kinematic ground contact force,gait analysis,optical measurement system,low-speed climbing stairs experiment,wearable multisensor system,lower limb joint torque evaluation,torque control,exoskeleton robot,classical Newton-Euler method,human model,low-speed stairs climbing,smart shoes,fuzzy logic rule,Newton-Euler method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要