Active Community Detection: A Maximum Likelihood Approach.

CoRR(2018)

Cited 23|Views7
No score
Abstract
We propose novel semi-supervised and active learning algorithms for the problem of community detection on networks. The algorithms are based on optimizing the likelihood function of the community assignments given a graph and an estimate of the statistical model that generated it. The optimization framework is inspired by prior work on the unsupervised community detection problem in Stochastic Block Models (SBM) using Semi-Definite Programming (SDP). In this paper we provide the next steps in the evolution of learning communities in this context which involves a constrained semi-definite programming algorithm, and a newly presented active learning algorithm. The active learner intelligently queries nodes that are expected to maximize the change in the model likelihood. Experimental results show that this active learning algorithm outperforms the random-selection semi-supervised version of the same algorithm as well as other state-of-the-art active learning algorithms. Our algorithms significantly improved performance is demonstrated on both real-world and SBM-generated networks even when the SBM has a signal to noise ratio (SNR) below the known unsupervised detectability threshold.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined