Reducing The Computational Complexity Of Two-Dimensional Lstms

18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION(2017)

引用 12|浏览53
暂无评分
摘要
Long Short-Term Memory Recurrent Neural Networks (LSTMs) are good at modeling temporal variations in speech recognition tasks, and have become an integral component of many state-of-the-art ASR systems. More recently, LSTMs have been extended to model variations in the speech signal in two dimensions, namely time and frequency [1, 2]. However. one of the problems with two-dimensional LSTMs, such as Grid-LSTMs, is that the processing in both time and frequency occurs sequentially, thus increasing computational complexity. In this work, we look at minimizing the dependence of the Grid-LSTM with respect to previous time and frequency points in the sequence, thus reducing computational complexity. Specifically, we compare reducing computation using a bidirectional Grid-LSTM (biGrid-LSTM) with non-overlapping frequency sub-band processing, a PyraMiD-LSTM [3] and a frequency-block Grid-LSTM (fbGrid-LSTM) for parallel time-frequency processing. We find that the fbGrid-LSTM can reduce computation costs by a factor of four with no loss in accuracy, on a 12,500 hour Voice Search task.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要