First in human evaluation of the vascular biocompatibility and biomechanical performance of a novel ultra high molecular weight amorphous PLLA bioresorbable scaffold in the absence of anti-proliferative drugs: Two-year imaging results in humans.

CATHETERIZATION AND CARDIOVASCULAR INTERVENTIONS(2018)

引用 7|浏览19
暂无评分
摘要
Objectives: In this first-in-human study, we prospectively studied the vascular compatibility and mechanical performance of a novel bare ultra-high molecular weight amorphous PLLA bioresorbable scaffold (BRS, FORTITUDE (R), Amaranth Medical, Mountain View, California) up to two years after implantation using multimodality imaging techniques. Background: The vascular biocompatibility of polymers used in BRS has not been fully characterized in the absence of anti-proliferative drugs. Methods: A total of 10 patients undergoing single scaffold implantation were included in the final analysis and were followed up using optical coherence tomography (OCT) at 2-years. All devices were implanted under angiographic and intravascular ultrasound (IVUS) guidance. Angiographic and IVUS follow up was performed at 6 months. Additionally, angiography and OCT imaging were performed at 2-years. Results: At 6 months, mean intra-scaffold angiographic MLD slightly decreased from baseline procedural values. However, at 2 years, mean angiographic MLD increased (post procedure; 2.9 [2.7, 3.1] mm vs. 6 months; 2.1 [1.6, 2.5] vs. 2 years; 2.4 [2.1, 2.6], P = .001). Also, angiographic percent diameter stenosis decreased and late lumen gain increased between 6 months and 2 years follow up. Mean neointimal hyperplasia volume assessed by IVUS at 6 months was 26% [15.2, 29.3]. At 2 years OCT follow up neointimal hyperplasia volume was 24.2% [19.4, 28.9]. No presence of neoatherosclerosis was identified in any of the analyzed cases. Conclusion: At 2 years, this novel PLLA-based BRS induced expansive vascular remodeling from 6 to 24 months, a biological phenomenon that appears to be independent of the presence of anti-proliferative drugs.
更多
查看译文
关键词
BIOD,bioabsorbable devices/polymers,OCT-optical coherence tomography,IVUS-imaging,intravascular ultrasound
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要