Key site residues of pheromone-binding protein 1 involved in interacting with sex pheromone components of Helicoverpa armigera.

Scientific reports(2017)

引用 15|浏览15
暂无评分
摘要
Pheromone binding proteins (PBPs) are widely distributed in insect antennae, and play important roles in the perception of sex pheromones. However, the detail mechanism of interaction between PBPs and odorants remains in a black box. Here, a predicted 3D structure of PBP1 of the serious agricultural pest, Helicoverpa armigera (HarmPBP1) was constructed, and the key residues that contribute to binding with the major sex pheromone components of this pest, (Z)-11- hexadecenal (Z11-16:Ald) and (Z)-9- hexadecenal (Z9-16:Ald), were predicted by molecular docking. The results of molecular simulation suggest that hydrophobic interactions are the main linkage between HarmPBP1 and the two aldehydes, and four residues in the binding pocket (Phe12, Phe36, Trp37, and Phe119) may participate in binding with these two ligands. Then site-directed mutagenesis and fluorescence binding assays were performed, and significant decrease of the binding ability to both Z11-16:Ald and Z9-16:Ald was observed in three mutants of HarmPBP1 (F12A, W37A, and F119A). These results revealed that Phe12, Trp37, and Phe119 are the key residues of HarmPBP1 in binding with the Z11-16:Ald and Z9-16:Ald. This study provides new insights into the interactions between pheromone and PBP, and may serve as a foundation for better understanding of the pheromone recognition in moths.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要