Unraveling the effects of arbuscular mycorrhizal fungus on uptake, translocation, and distribution of cadmium in Phragmites australis (Cav.) Trin. ex Steud.

Ecotoxicology and environmental safety(2017)

引用 58|浏览8
暂无评分
摘要
Phragmites australis (Cav.) Trin. ex Steud. has been reported to form a symbiosis with arbuscular mycorrhizal fungus (AMF). However, the tolerance mechanism for AMF symbiosis on cadmium (Cd) phytotoxicity still remains unclear. In this study, we investigated the effects of Rhizophagus irregularis inoculation on Cd-stressed (0, 1, and 20mgL-1) roots, stems, and leaves of P. australis with regard to subcellular Cd distribution and chemical forms of Cd. In addition, transmission electron microscopy and Fourier transform infrared spectroscopy were used to investigate variations in subcellular structures and functional groups in plant organs. The results showed that AMF inoculation could induce selective Cd distribution at subcellular levels, depending on different Cd treatments. The investigation of the chemical forms illustrated that AMF inoculation could alleviate Cd toxicity in all organs. Increases were observed in the ratios of undissolved Cd (FHAc) and oxalate Cd (FHCl), while decreases were observed in pectates and protein-integrated Cd (FNaCl) as well as water soluble Cd (FW). Hydroxyl (-OH), amide (-NH), carboxyl (C=O), and phosphate (P=O) groups as well as C-O and C-N stretching played predominant roles for the enhancement of Cd tolerance in response to AMF inoculation. These results provide instructive evidence for the mechanisms by which AMF inoculation enhances the Cd tolerance of P. australis via Cd uptake and distribution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要