Impaired Ciliogenesis in differentiating human bronchial epithelia exposed to non-Cytotoxic doses of multi-walled carbon Nanotubes

Particle and fibre toxicology(2017)

引用 6|浏览14
暂无评分
摘要
Background Multi-walled carbon nanotubes (MWCNTs) are engineered nanomaterials used for a variety of industrial and consumer products. Their high tensile strength, hydrophobicity, and semi-conductive properties have enabled many novel applications, increasing the possibility of accidental nanotube inhalation by either consumers or factory workers. While MWCNT inhalation has been previously shown to cause inflammation and pulmonary fibrosis at high doses, the susceptibility of differentiating bronchial epithelia to MWCNT exposure remains unexplored. In this study, we investigate the effect of MWCNT exposure on cilia development in a differentiating air-liquid interface (ALI) model. Primary bronchial epithelial cells (BECs) were isolated from human donors via bronchoscopy and treated with non-cytotoxic doses of MWCNTs in submerged culture for 24 h. Cultures were then allowed to differentiate in ALI for 28 days in the absence of further MWCNT exposure. At 28 days, mucociliary differentiation endpoints were assessed, including whole-mount immunofluorescent staining, histological, immunohistochemical and ultrastructural analysis, gene expression, and cilia beating analysis. Results We found a reduction in the prevalence and beating of ciliated cells in MWCNT-treated cultures, which appeared to be caused by a disruption of cellular microtubules and cytoskeleton during ciliogenesis and basal body docking. Expression of gene markers of mucociliary differentiation, such as FOXJ1 and MUC5AC/B, were not affected by treatment. Colocalization of basal body marker CEP164 with γ-tubulin during days 1–3 of ciliogenesis, as well as abundance of basal bodies up to day 14, were attenuated by treatment with MWCNTs. Conclusions Our results suggest that a single exposure of bronchial cells to MWCNT during a vulnerable period before differentiation may impair their ability to develop into fully functional ciliated cells.
更多
查看译文
关键词
Carbon Nanotubes,Cilia,Ciliogenesis,Epithelial cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要