DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests.

Scientific reports(2017)

Cited 53|Views16
No score
Abstract
DNA barcoding is a useful tool for species identification and phylogenetic construction. But present studies have far reached a consistent result on the universality of DNA barcoding. We tested the universality of tree species DNA barcodes including rbcL, matK, trnH-psbA and ITS, and examined their abilities of species identification and phylogenetic construction in three tropical cloud forests. Results showed that the success rates of PCR amplification of rbcL, matK, trnH-psbA and ITS were 75.26% ± 3.65%, 57.24% ± 4.42%, 79.28% ± 7.08%, 50.31% ± 6.64%, and the rates of DNA sequencing were 63.84% ± 4.32%, 50.82% ± 4.36%, 72.87% ± 11.37%, 45.15% ± 8.91% respectively, suggesting that both rbcL and trnH-psbA are universal for tree species in the tropical cloud forests. The success rates of species identification of the four fragments were higher than 41.00% (rbcL: 41.50% ± 2.81%, matK: 42.88% ± 2.59%, trnH-psbA: 46.16% ± 5.11% and ITS: 47.20% ± 5.76%), demonstrating that these fragments have potentiality in species identification. When the phylogenetic relationships were built with random fragment combinations, optimal evolutionary tree with high supporting values were established using the combinations of rbcL + matK + trnH-psbA in tropical cloud forests.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined