Cross-Linked Collagen Triple Helices By Oxime Ligation

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2017)

引用 47|浏览15
暂无评分
摘要
Covalent cross-links are crucial for the folding and stability of triple-helical collagen, the most abundant protein in nature. Cross-linking is also an attractive strategy for the development of synthetic collagen-based biocompatible materials. Nature uses interchain disulfide bridges to stabilize collagen trimers. However, their implementation into synthetic collagen is difficult and requires the replacement of the canonical amino acids (4R)-hydroxyproline and proline by cysteine or homocysteine, which reduces the preorganization and thereby stability of collagen triple explored alternative covalent cross-links that allow for connecting triple-helical collagen via proline residues. Here, we present collagen model peptides that are cross-linked by oxime bonds between 4-aminooxyproline (Aop) and 4-oxoacetamidoproline placed in coplanar Xaa and Yaa positions of neighboring strands. The covalently connected strands folded into hyperstable collagen triple helices (T-m approximate to 80 degrees C). The design of the cross-links was guided by an analysis of the conformational properties of Aop, studies on the stability and functionalization of Aop-containing collagen triple helices, and molecular dynamics simulations. The studies also show that the aminooxy group exerts a stereoelectronic effect comparable to fluorine and introduce codme ligation as a tool for the functionalization of synthetic collagen.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要