Small-Scale, Local Area, and Transitional Millimeter Wave Propagation for 5G Communications.

IEEE Transactions on Antennas and Propagation(2017)

引用 162|浏览19
暂无评分
摘要
This paper studies radio propagation mechanisms that impact handoffs, air interface design, beam steering, and multiple-input multiple-output for 5G mobile communication systems. Knife-edge diffraction (KED) and a creeping wave linear model are shown to predict diffraction loss around typical building objects from 10 to 26 GHz, and human blockage measurements at 73 GHz are shown to fit a double KED model, which incorporates antenna gains. Small-scale spatial fading of millimeter wave (mmWave)-received signal voltage amplitude is generally Ricean-distributed for both omnidirectional and directional receive antenna patterns under both line-of-sight (LOS) and non-line-of-sight (NLOS) conditions in most cases, although the log-normal distribution fits measured data better for the omnidirectional receive antenna pattern in the NLOS environment. Small-scale spatial autocorrelations of received voltage amplitudes are shown to fit sinusoidal exponential and exponential functions for LOS and NLOS environments, respectively, with small decorrelation distances of 0.27-13.6 cm (smaller than the size of a handset) that are favorable for spatial multiplexing. Local area measurements using cluster and route scenarios show how the received signal changes as the mobile moves and transitions from LOS to NLOS locations, with reasonably stationary signal levels within clusters. Wideband mmWave power levels are shown to fade from 0.4 dB/ms to 40 dB/s, depending on travel speed and surroundings.
更多
查看译文
关键词
Diffraction,Antenna measurements,Frequency measurement,Predictive models,Loss measurement,Mobile communication,Power measurement
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要