A High Performance Packet Core for Next Generation Cellular Networks

SIGCOMM(2017)

引用 112|浏览253
暂无评分
摘要
Cellular traffic continues to grow rapidly making the scalability of the cellular infrastructure a critical issue. However, there is mounting evidence that the current Evolved Packet Core (EPC) is ill-suited to meet these scaling demands: EPC solutions based on specialized appliances are expensive to scale and recent software EPCs perform poorly, particularly with increasing numbers of devices or signaling traffic. In this paper, we design and evaluate a new system architecture for a software EPC that achieves high and scalable performance. We postulate that the poor scaling of existing EPC systems stems from the manner in which the system is decomposed which leads to device state being duplicated across multiple components which in turn results in frequent interactions between the different components. We propose an alternate approach in which state for a single device is consolidated in one location and EPC functions are (re)organized for efficient access to this consolidated state. In effect, our design \"slices\" the EPC by user. We prototype and evaluate PEPC, a software EPC that implements the key components of our design. We show that PEPC achieves 3-7x higher throughput than comparable software EPCs that have been implemented in industry and over 10x higher throughput than a popular open-source implementation (OpenAirInterface). Compared to the industrial EPC implementations, PEPC sustains high data throughput for 10-100x more users devices per core, and a 10x higher ratio of signaling-to-data traffic. In addition to high performance, PEPC's by-user organization enables efficient state migration and customization of processing pipelines. We implement user migration in PEPC and show that state can be migrated with little disruption, e.g., migration adds only up to 4μs of latency to median per packet latencies.
更多
查看译文
关键词
Cellular Networks,EPC,Network Function
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要