Chrome Extension
WeChat Mini Program
Use on ChatGLM

Construction and Immunogenicity Analysis of Whole-Gene Mutation DNA Vaccine of Aleutian Mink Virus Isolated Virulent Strain.

VIRAL IMMUNOLOGY(2018)

Cited 10|Views6
No score
Abstract
Aleutian mink disease (AD) is a chronic viral infection that causes autoimmune disorders in minks and presents a significant economic burden on mink farming. Despite the substantial challenges presented by AD, no effective vaccine is available and only partial protection has been achieved. We constructed a whole-gene nucleic acid vaccine from an isolated virulent Aleutian mink disease virus (ADV) strain (pcDNA3.1-ADV). Based on this whole-gene nucleic acid vaccine, we generated truncated mutant constructs by removing portions of the ADV VP2 gene using overlap extension polymerase chain reaction. pcDNA3.1-ADV-428 lacks nucleotides encoding VP2 amino acid residues 428-466, and pcDNA3.1-ADV-428-487 harbors additional deletion of nucleotides coding for VP2 amino acid residues 487-501. We also generated nucleic acid vaccines for the ADV NS1 gene, truncated ADV NS1 gene, ADV VS2 gene, and truncated ADV VS2 gene: pcDNA3.1-NS1, pcDNA3.1-NS1-D, pcDNA3.1-VP2, and pcDNA3.1-VP2-D, respectively. The immunogenicity of the seven DNA vaccines was confirmed by immunofluorescent evaluation. Sixty female minks were divided into 10 groups: seven groups were immunized with the DNA vaccines, one control group was injected with phosphate-buffered saline, one group was immunized with pcDNA3.1 empty vector, and one group was immunized with inactivated ADV-G virus. ADV antibody levels, percentage of CD8(+) cells in blood, and levels of -globulin and circulating immune complexes in the serum were evaluated longitudinally over 36 weeks after ADV challenge. Minks that were immunized with the pcDNA3.1-ADV-428-487 nucleic acid vaccine produced ADV antibodies. After ADV challenge, the minks immunized with pcDNA3.1-ADV-428-487 nucleic acid vaccine had lower -globulin content and lower CIC in serum compared to other immunization groups. Although the pcDNA3.1-ADV-428-487 nucleic acid vaccine did not demonstrate complete protection against ADV, it demonstrated marked efficacy and could potentially be used as a vaccine to prevent losses in mink populations due to ADV. Discovery of effective means to vaccinate mink against ADV will not only improve overall health of mink populations but will also reduce the economic impact of ADV.
More
Translated text
Key words
Aleutian mink disease,Aleutian mink disease virus,nucleic acid vaccine,immunogenicity
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined