Stability Switches Induced by Immune System Boosting in an SIRS Model with Discrete and Distributed Delays.

SIAM JOURNAL ON APPLIED MATHEMATICS(2017)

引用 19|浏览6
暂无评分
摘要
We consider an epidemiological model that includes waning and boosting of immunity. Assuming that repeated exposure to the pathogen fully restores immunity, we derive an SIRS-type model with discrete and distributed delays. First we prove usual results, namely that if the basic reproduction number, R-0, is less or equal than 1, then the disease-free equilibrium is globally asymptotically stable, whereas for R-0 > 1 the disease persists in the population. The interesting features of boosting appear with respect to the endemic equilibrium, which can go through multiple stability switches by changing the key model parameters. We construct two-parameter stability charts, showing that increasing the delay can stabilize the positive equilibrium. Increasing R-0, the endemic equilibrium can cross two distinct regions of instability, separated by Hopf bifurcations. Our results show that the dynamics of infectious diseases with boosting of immunity can be more complex than most epidemiological models, and calls for careful mathematical analysis.
更多
查看译文
关键词
delay equations,distributed delay,stability,basic reproduction number,endemic equilibrium,bifurcation,persistence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要