Chrome Extension
WeChat Mini Program
Use on ChatGLM

Evolutionary history of the mariner element galluhop in avian genomes

Mobile DNA(2017)

Cited 3|Views2
No score
Abstract
Background Transposable elements (TEs) are highly abundant genomic parasites in eukaryote genomes. Although several genomes have been screened for TEs, so far very limited information is available regarding avian TEs and their evolutionary histories. Taking advantage of the rich genomic data available for birds, we characterized the evolutionary history of the galluhop element, originally described in Gallus gallus , through the use of several bioinformatic analyses. Results galluhop homologous sequences were found in 6 of 72 genomes analyzed: 5 species of Galliformes ( Gallus gallus , Meleagris gallopavo , Coturnix japonica , Colinus virginianus , Lyrurus tetrix ) and one Buceritiformes ( Buceros rhinoceros ). The copy number ranged from 5 to 10,158, in the genomes of C. japonica and G. gallus respectively. All 6 species possessed short elements, suggesting the presence of Miniature Inverted repeats Transposable Elements (MITEs), which underwent an ancient massive amplification in the G. gallus and M. gallopavo genomes. Only 4 species showed potential MITE full-length partners, although no potential coding copies were detected. Phylogenetic analysis of reconstructed coding sequences showed that galluhop homolog sequences form a new mariner subfamily, which we termed Gallus . Inter-species and intragenomic galluhop distance analyses indicated a high identity between the consensus of B. rhinoceros and the other 5 related species, and different emergence ages of the element between the Galliformes species and B. rhinocerus , suggesting that horizontal transfer took place from Galliformes to a Buceritiformes ancestor, probably through an intermediate species. Conclusions Overall, our results showed that mariner elements have amplified to high copy numbers in some avian species, and that this transposition burst probably occurred in the common ancestor of G. gallus and M. gallopavo. In addition, although no coding sequences could be found currently, they probably existed, allowing an ancient massive MITE amplification in these 2 species. The other 4 species also have MITEs, suggesting that this new mariner family is prone to give rise to such non-autonomous derivatives. Last, our results suggest that a horizontal transfer event of a galluhop element occurred between Galliformes and Buceritiformes.
More
Translated text
Key words
Galluhop,Mariner,Avian genome,Horizontal transfer,MITEs,Genomic parasites
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined