Visualization of Synthetic Vascular Smooth Muscle Cells in Atherosclerotic Carotid Rat Arteries by F-18 FDG PET

SCIENTIFIC REPORTS(2017)

Cited 24|Views20
No score
Abstract
Synthetic vascular smooth muscle cells (VSMCs) play important roles in atherosclerosis, in-stent restenosis, and transplant vasculopathy. We investigated the synthetic activity of VSMCs in the atherosclerotic carotid artery using 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Atherosclerosis was induced in rats by partial ligation of the right carotid artery coupled with an atherogenic diet and vitamin D injections (2 consecutive days, 600,000 IU/day). One month later, rats were imaged by F-18 FDG PET. The atherosclerotic right carotid arteries showed prominent luminal narrowing with neointimal hyperplasia. The regions with neointimal hyperplasia were composed of α-smooth muscle actin-positive cells with decreased expression of smooth muscle myosin heavy chain. Surrogate markers of synthetic VSMCs such as collagen type III, cyclophilin A, and matrix metallopeptidase-9 were increased in neointima region. However, neither macrophages nor neutrophils were observed in regions with neointimal hyperplasia. F-18 FDG PET imaging and autoradiography showed elevated FDG uptake into the atherosclerotic carotid artery. The inner vessel layer showed higher tracer uptake than the outer layer. Consistently, the expression of glucose transporter 1 was highly increased in neointima. The present results indicate that F-18 FDG PET may be a useful tool for evaluating synthetic activities of VSMCs in vascular remodeling disorders.
More
Translated text
Key words
Atherosclerosis,Molecular medicine,Restenosis,Science,Humanities and Social Sciences,multidisciplinary
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined