Remodeling of energy metabolism by a ketone body and medium-chain fatty acid suppressed the proliferation of CT26 mouse colon cancer cells.

ONCOLOGY LETTERS(2017)

引用 40|浏览7
暂无评分
摘要
Normal and cancerous cells are suggested to have differential utilization of fatty acids and ketone bodies, which could be exploited in cancer therapy. The present study examined the effect of 3-hydroxybutyric acid (3-HBA), which is a ketone body generating acetyl-CoA, and lauric acid (LAA, C12:0), which is a medium-chain saturated fatty acid trans located to mitochondria in a carnitine-independent manner to produce acetyl-CoA, on the energy metabolism of mouse CT26 colon cancer cells. In CT26 cells expressing 3-HBA and LAA transporters, 3-HBA and LAA reduced cell proliferation, mitochondrial volume and lactate production, and increased oxidative stress, particularly in low-glucose conditions. Concurrent treatment with 3-HBA and LAA under glucose starvation had a synergistic effect on cell growth inhibition. In addition, LAA and LAA + 3-HBA promoted an imbalance in the expression of enzymes in the electron transport chain. These findings suggested that treatment with 3-HBA and/or LAA during glucose starvation may reprogram energy metabolism and decrease the proliferation of cancer cells.
更多
查看译文
关键词
3-hydroxybutiryic acid,lauric acid,mitochondria,oxidative stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要