Structural variation in a synchrotron-induced contamination layer (a-C:H) deposited on a toroidal Au mirror surface.

JOURNAL OF SYNCHROTRON RADIATION(2017)

引用 7|浏览5
暂无评分
摘要
A carbon layer deposited on an optical component is the result of complex interactions between the optical surface, adsorbed hydrocarbons, photons and secondary electrons (photoelectrons generated on the surface of optical elements). In the present study a synchrotron-induced contamination layer on a 340 mm × 60 mm Au-coated toroidal mirror has been characterized. The contamination layer showed a strong variation in structural properties from the centre of the mirror to the edge region (along the long dimension of the mirror) due to the Gaussian distribution of the incident photon beam intensity/power on the mirror surface. Raman scattering measurements were carried out at 12 equidistant (25 mm) locations along the length of the mirror. The surface contamination layer that formed on the Au surface was observed to be hydrogenated amorphous carbon film in nature. The effects of the synchrotron beam intensity/power distribution on the structural properties of the contamination layer are discussed. The I(D)/I(G) ratio, cluster size and disordering were found to increase whereas the sp2:sp3 ratio, G peak position and H content decreased with photon dose. The structural parameters of the contamination layer in the central region were estimated (thickness ≃ 400 Å, roughness ≃ 60 Å, density ≃ 72% of bulk graphitic carbon density) by soft X-ray reflectivity measurements. The amorphous nature of the layer in the central region was observed by grazing-incidence X-ray diffraction.
更多
查看译文
关键词
reflectivity,Raman spectroscopy,X-ray diffraction,hydrogenerated carbon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要