Inhibition of PLD1 activity causes ER stress via regulation of COPII vesicle formation.

Biochemical and Biophysical Research Communications(2017)

引用 12|浏览3
暂无评分
摘要
Phospholipase D (PLD) plays a crucial role in the regulation of some cellular processes, including autophagy and apoptosis. Accumulation of protein in the endoplasmic reticulum (ER) lumen causes ER stress. Although ER stress is a principal cause of apoptosis and autophagy, the relationship between PLD activity and ER stress remains unclear. Protein transport from the ER to the Golgi apparatus is conducted by coat complex II (COPII) transport vesicles. Here, we demonstrated that inhibition of PLD1 activity or PLD1 knockdown suppressed COPII vesicle transport in normal rat kidney (NRK) cells. COPII vesicle coat proteins are composed of Sar1 as well as Sec23/24 and Sec13/31 complexes. For COPII vesicle formation on the ER membrane, Sar1, Sec23/24, and Sec13/31 are sequentially recruited from the cytosol to the ER membrane. Using a cell-free COPII coat protein recruitment assay, we demonstrated that inhibition of PLD1 activity suppressed Sec13/31 recruitment from the cytosol to the ER membrane in COPII vesicle formation. PLD1 knockdown in NRK cells was associated with increased expression of the ER stress marker GRP78 and apoptosis. Taken together, these results suggest that PLD1 activity regulates COPII vesicle transport from the ER to the Golgi apparatus by regulating Sec13/31 recruitment from the cytosol to the ER membrane during COPII vesicle formation.
更多
查看译文
关键词
Phospholipase D,COPII transport,ER stress,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要