Tissue-engineered PLLA/gelatine nanofibrous scaffold promoting the phenotypic expression of epithelial and smooth muscle cells for urethral reconstruction.

Materials science & engineering. C, Materials for biological applications(2020)

引用 41|浏览13
暂无评分
摘要
The repair and regeneration of tissues using tissue-engineered scaffolds represent the ultimate goal of regenerative medicine. Despite rapid developments in the field, urethral tissue engineering methods are still insufficient to replicate natural urethral tissue because the bioactivity of existing scaffolds is inefficient, especially for large tissue defects, which require large tissue-engineered scaffolds. Here, we describe the efficiency of gelatine-functionalized, tubular nanofibrous scaffolds of poly(l-lactic acid) (PLLA) in regulating the phenotypic expression of epithelial cells (ECs) and smooth muscle cells (SMCs) for urethral reconstruction. Flexible PLLA/gelatine tubular nanofibrous scaffolds with hierarchical architecture were fabricated by electrospinning. The PLLA/gelatine nanofibrous scaffold exhibited enhanced hydrophilicity and significantly promoted the adhesion, oriented elongation, and proliferation of New Zealand rabbit autologous ECs and SMCs simultaneously. Compared with pure PLLA nanofibrous scaffold, PLLA/gelatine nanofibrous scaffolds upregulated the expression of keratin (AE1/AE3) in ECs and actin (α-SMA) in SMCs as well as the synthesis of elastin. Three months of in vivo scaffold replacement of New Zealand rabbit urethras indicated that a tubular cellularized PLLA/gelatine nanofibrous scaffold maintained urethral patency and facilitated oriented SMC remodeling, lumen epithelialization, and angiogenesis. Our observations showed the synergistic effects of nano-morphology and biochemical clues in the design of biomimetic scaffolds, which can effectively promote urethral regeneration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要