Estimation of differential code biases for Beidou navigation system using multi-GNSS observations: How stable are the differential satellite and receiver code biases?

Journal of Geodesy(2016)

引用 28|浏览6
暂无评分
摘要
Differential code biases (DCBs) are important parameters that must be estimated accurately and reliably for high-precision GNSS applications. For optimal operational service performance of the Beidou navigation system (BDS), continuous monitoring and constant quality assessment of the BDS satellite DCBs are crucial. In this study, a global ionospheric model was constructed based on a dual system BDS/GPS combination. Daily BDS DCBs were estimated together with the total electron content from 23 months’ multi-GNSS observations. The stability of the resulting BDS DCB estimates was analyzed in detail. It was found that over a long period, the standard deviations (STDs) for all satellite B1–B2 DCBs were within 0.3 ns (average: 0.19 ns) and for all satellite B1–B3 DCBs, the STDs were within 0.36 ns (average: 0.22 ns). For BDS receivers, the STDs were greater than for the satellites, with most values \(<\)2 ns. The DCBs of different receiver families are different. Comparison of the statistics of the short-term stability of satellite DCBs over different time intervals revealed that the difference in STD between 28- and 7-day intervals was small, with a maximum not exceeding 0.06 ns. In almost all cases, the difference in BDS satellite DCBs between two consecutive days was \(<\)0.8 ns. The main conclusion is that because of the stability of the BDS DCBs, they only require occasional estimation or calibration. Furthermore, the 30-day averaged satellite DCBs can be used reliably for the most demanding BDS applications.
更多
查看译文
关键词
Differential code bias,GNSS,Beidou navigation system,Global ionospheric model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要