Nicotine facilitates VSMC dysfunction through a miR-200b/RhoGDIA/cytoskeleton module

SCIENTIFIC REPORTS(2017)

引用 13|浏览12
暂无评分
摘要
Nicotine can induce the abnormal migration and proliferation of vascular smooth muscle cells (VSMCs). We have previously shown that cytoskeletal proteins and RhoGDIA, a negative regulator of the Rho GTPase pathway, are involved in the nicotine-induced dysfunction of VSMCs. Here, we found that nicotine can activate the Rho GTPase pathway and induce the synthesis of the cytoskeletal proteins in VSMCs through the activation of intracellular downstream signaling pathways, including targets such as MYPT1, PAK1 and PI3K/AKT. Upon nicotine treatment, the mRNA level of RhoGDIA is increased but protein level is decreased both in vitro and in vivo , which suggested a mechanism of post-translational regulation. By the dual luciferase reporter assay, we identified the microRNA-200b (miR-200b) as a modulator of the behavioural changes of VSMCs in response to nicotine through targeting RhoGDIA directly. Introducing miR-200b inhibitors into cultured VSMCs significantly attenuated cell proliferation and migration. Additionally, we found that hypomethylation in the CpG island shore region of miR-200b was responsible for the nicotine-induced miR-200b up-regulation in VSMCs. The study demonstrates that nicotine facilitates VSMC dysfunction through a miR-200b/RhoGDIA/cytoskeleton module through the hypomethylation of miR-200b promoter and suggests that epigenetic modifications may play an important role in the pathological progression.
更多
查看译文
关键词
RHO signalling,Vascular diseases,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要