Helical edge states and fractional quantum Hall effect in a graphene electron–hole bilayer

NATURE NANOTECHNOLOGY(2017)

引用 60|浏览2
暂无评分
摘要
Helical 1D electronic systems are a promising route towards realizing circuits of topological quantum states that exhibit non-Abelian statistics(1-4). Here, we demonstrate a versatile platform to realize 1D systems made by combining quantum Hall (QH) edge states of opposite chiralities in a graphene electron hole bilayer at moderate magnetic fields. Using this approach, we engineer helical 1D edge conductors where the counterpropagating modes are localized in separate electron and hole layers by a tunable electric field. These helical conductors exhibit strong non-local transport signals and suppressed backscattering due to the opposite spin polarizations of the counterpropagating modes. Unlike other approaches used for realizing helical states(3-7), the graphene electron-hole bilayer can be used to build new 1D systems incorporating fractional edge states(8,9). Indeed, we are able to tune the bilayer devices into a regime hosting fractional and integer edge states of opposite chiralities, paving the way towards 1D helical conductors with fractional quantum statistics(10-13).
更多
查看译文
关键词
Electronic properties and devices,Topological insulators,Quantum Hall,Spintronics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要