Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum

SCIENTIFIC REPORTS(2016)

Cited 47|Views15
No score
Abstract
The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here “orbital birefringence”, based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create “orbital gain dichroism” allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (<1°) diffraction limited beam, emitting 49 mW output power in the near-IR at λ ≃ 1 μm , a charge l = ±1, … ±4 (>50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications.
More
Translated text
Key words
Metamaterials,Semiconductor lasers,Science,Humanities and Social Sciences,multidisciplinary
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined